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Executive Summary 

This research effort represents our investigation on the following problems: 

1. Optimal processor structure for detecting a rank one signal in additive non-Gaussian 
radar modeled by a spherically invariant random process (SIRP) and its performance 

analysis. 

2. Analytical expressions for the detection and false alarm probability for two impor- 
tant detection tests. 

3. Statistical analysis of the non-homogeneity detector for Gaussian interference sce- 
narios. 

Our work on item 1 presents integral expressions for detection and false alarm prob- 
abilities of the optimal processor for detecting a rank one signal in a background of 
non-Gaussian clutter which is modeled by a SIRP. It is well known that when operating 
in Gaussian clutter backgrounds, the best achievable performance is that of a matched 
filter (MF) or a normalized correlator. In this work we present the performance analysis 
of the corresponding optimal processor for SIRPs. Integral expressions for detection and 
false alarm probabilities are obtained [1]. 

In many instances, it is impossible to implement the optimal processor outlined in 
item 1. Consequently, we seek methods which circumvent the need to know the clutter 
probability density function (PDF). This aspect is addressed in item 2, where we present 
analytical results for the probability of detection and probability of false alarm for the 
normalized matched filter (NMF) and normalized adaptive matched filter (NAMF) tests. 
Performance is compared to the adaptive matched filter and the Kelly GLRT receiver. 
The analytic expressions derived in this work were reported in [2]. 

Finally, an important issue in STAP is that of homogeneity of training data. Non- 
homogeneity of the training data has a deleterious effect on STAP performance in that 
undernulled clutter significantly degrades detection and false alarm characteristics. Previ- 
ous work in this area has proposed the use of a non-homogeneity detector (NHD) based on 
a generalized inner product (GIP). Our work on item 3 considers the statistical analysis 
of the NHD for Gaussian interference statistics. We show that a more stringent test can 
be constructed by accounting for the statistics of the (GIP) under the condition of finite 
training data support. In particular, exact theoretical expressions for the GIP PDF and 
GIP mean are derived.  Additionally, we show that for Gaussian interference statistics, 

IV 



the GIP admits a simple representation as the ratio of two ?««**%£%££ ^p 
Square distributed random variables. Performance analyse of the more  trmgent t, 
bled test is presented. Results from this investigarion were reported m [3]. 



Chapter 1 

Optimal Space-Time Adaptive 
Processing Method in Non-Gaussian 
Radar Clutter Backgrounds 

1.1    Motivation 
This analysis is motivated by the problem of space-time adaptive (STAP) processing in 
non-Gaussian clutter backgrounds. The problem of adaptive target detection in Gaussian 
clutter has received considerable attention [4-8]. The corresponding problem for non- 
Gaussian clutter backgrounds has been the focus of recent work reported in [9-14J. Ine 
receiver developed in [7,15] is an adaptive matched filter (AMF), whose performance 
asymptotically reaches that of the matched filter (MF) which is the optimal processor for 
Gaussian clutter statistics. Thus, the MF represents an upper bound on the performance 
of the AMF for Gaussian clutter statistics. 

In [10 11] we showed that the receiver for non-Gaussian SIRPs is equivalent to an 
adaptive' matched filter compared to a data dependent threshold. The distribution of the 
test statistic was extremely difficult to derive in closed form. Consequently, performance 
analysis in [11] was carried out by Monte-Carlo simulation in the multichannel signal 
processing system developed at AFRL/SNRT. The goal of this effort is to obtain an upper 
bound on the performance of the adaptive processor provided by the optimal receiver for 
SIRPs This enables the specification of meaningful adaptive performance metrics such as 
the sample support size needed to get to within 3dB of the optimal processor performance^ 

Accordingly, we briefly outline the derivation of the optimal processor for SIRPs and 
present relevant details of the performance evaluation. Integral expressions for the proba- 
bility of detection and false alarm are derived. As a special case, these expressions reduce 
to the well known Gaussian MF results. 



1.2    Problem Statement 

We consider the following statistical hypothesis testing problem: 

H0:   x = y (11) 

Hi :   x = as + y 

where x = Received JN x 1 complex observation vector 
s = Known steering vector 
a = Unknown complex signal amplitude 
y = Complex spherically invariant random vector (SIRV) with known Hermitian positive 
definite covariance matrix, £ and known characteristic probability density function (PDF) 
fv(v). It is important to note that the optimal processor for SIRVs assumes knowledge 
of the covariance matrix and the characteristic PDF. 

The maximum likelihood estimate of a is given by [11] 

ä = s  ^   x (1.2) 
°     s*£-is V 

This estimate is then used in a likelihood ratio test to discriminate between the two 
hypotheses. The likelihood ratio test for SIRPs takes on the form 

Hi 

A(x) = ^M^T (1.3) 

where q0 = x^E^x, qx = x^E^x - ''.g^-ff and 

W«) = ^VJNexp{-^)fv{v)dv. (1.4) 

Using p2 = ,g^-SaJi-ix» tne magnitude squared coherence between s and x, qx is 
expressed as q*= qo(l - p*). Since SIRVs are closed under linear transformations, ro- 
tational and scaling operations on every SIRV result in another SIRV having the same 
characteristic PDF [16]. In all detection analyses involving colored noise spectra, there 
is no performance penalty for whitening the noise. Accordingly, we use an eigenvalue de- 
composition of the covariance matrix of the form E = EDEH, where E = Matrix whose 
columns are orthonormal eigenvectors of E and D is the diagonal matrix of eigenvalues 
of E. Let D_1/2Effx = x' and D_1/2EHs = s'. From the closure property of SIRVs it 
follows that x is an SIRV with zero mean, identity (JN x JN) covariance matrix and 
characteristic PDF ./y(*>)- 

Consequently, 
Q0 = ||x'||2 = xffE-1x 

* = I|X,|'2IV'2) (1-5) 
jjs'll2 = sÄS-Ls 



where ||.||2 denotes the squared norm. 
We then define an additional transformation A which rotates s and places the signal 

energy into the first component of the rotated vector. More precisely let s0 = As where 
s0 = ||s'||[l,0,...0]T. The matrix A is specified by the Householder transformation as 
A = I - 2^d where u = (s - s0). Let x0 = Ax'. The following properties of A can be 
readily established. For the sake of completeness, the proofs are provided here although 

they may be found elsewhere [17]. 
H 1. A is a Hermitian symmetric matrix, i.e., A = A 

Proof: 
\H     rr    oia^iff     T    Q"U    — A A"=[I-2ppJ     -1       2||a||3-A 

2. A is a Unitary matrix. Thus, AAH = AHA = I. 

From property 1, we have A = AH. Hence, AAF = AHA = p-2pfp][I-2pjji] = 

T       * uu"    i   Aauj — T 

3. The Householder transformation is norm preserving. 
Proof- 

We have s0 = As'.   Hence, ||s0||
2 = s'*A*As' = ||s'||2 (since A* A = I from 

property 2). 

4. The inner product between two vectors undergoing the same Householder transfor- 
mation remains unchanged. 
Proof: IT . 
SHXO = [As']ff Ax' = s'HAHAx' = s'Hx' (since AHA = I from property 2). 

We use properties 3 and 4 of the Householder transformation to rewrite q0 and qx as 

?o = ||x'||2 = ||xo||2 = E^I^|2 (16) 

gi = l|x'||2(l-p'2) = l|xo||2(l-&)=E^I^|2. 

It is also worthwhile noting that x0 is also an SIRV with zero mean identity covariance 
matrix and characteristic PDF fv{v). Let W = |Xoi|2 and A = Effi l*o;|2- As a result, 
the test of eq (1.3) reduces to 

Afxl_      WA)     >
T (1.7) 

A(X) ~ h2JN(W + A) ^0 

which can equivalently be expressed as 

wt\-J^WA)]-A (1-8) 
Ho 

LT 

Let T* = hö}N[
1
^N(A)] - A. This reveals that the optimal strategy for detecting known 

signals (with unknown complex amplitude) in SIRPs (with known covariance matrix) is 



equivalent to a matched filter compared to a data dependent threshold. The test of the 
form of eq (1.8) is convenient for carrying out performance analyses since it enables us to 
exploit the statistical independence between W and A conditioned on V. This becomes 
clear in the next section. 

The advantage of the Householder transformation is that it affords a dimensionality re- 
duction by using a signal vector representation, in which all the signal energy is contained 
in the first component of the transformed signal vector. The remaining components of 
the transformed signal vector are zero. The Householder transformation also enables us 
to demonstrate the maximal invariance of the test statistic of eq (1.3) with respect to 
rotation and scaling transformations and hence, establish the constant false alarm rate 
(CFAR) feature of the test. 

1.3    Performance Evaluation 
In this section, we derive integral expressions for the probability of detection and false 
alarm for the test of eq (1.8). Since x0 is an SIRV with zero mean and identity covariance 
matrix, it can be represented as the product of a complex-Gaussian random vector z hav- 
ing zero mean and identity covariance matrix and a statistically independent nonnegative 
random variable V with PDF fv(v) [18]. Thus, x0 = zV. Consequently, under the H0 

hypothesis, conditioned on V, W and A are statistically independent Chi-Squared dis- 
tributed random variables with 1 and JN-1 complex degrees of freedom, respectively. 
Furthermore, the PDF of A remains unchanged under the Hi hypothesis. Consequently, 

fw\v(w\v) = ^exp(-^) w > 0 (1.9) 

AJN-2 A 

/A|v(A|tO = r{JN-l)v2JN-2eXP(-^   A > °- (L10) 

The false alarm probability, Pfa, of the test of eq (1.8) conditioned on A and V is given 

by °° 1 w T* 
P/-IA.V = jT ^exp(-^)dw = expi-^). (1.11) 

The unconditional false alarm probability is obtained as 

Pfa = I" [* exp(-^)Ulv(A\v)fv(v)dAdv. (1.12) 
J       Jo   Jo v 

Under the Hi hypothesis, the PDF of A conditioned on V remains unchanged. However, 
under Hu W is recognized to be the squared magnitude of a complex Gaussian random 
variable with mean 77 = l^v/s^IF^s. Hence, W conditioned on V is simply the square of 
a Rician distributed random variable R, whose PDF is given by 

Mr) = ^-£±22]/,(£) r > 0 (1.M) 



where J0(.) is the modified Bessel function of the first kind of order zero. Hence, the 
conditional probability of detection is given by 

PD\A,v = J^fR(r)dr. (1.14) 

The unconditional probability of detection is obtained as 

PD = f°° f" PDlA,vfA\v(&\v)fv(v)dAdv. (1.15) 
Jo   Jo 

Unfortunately, it is not possible to further simplify the integrals in eqs (1.12) and (1.15). 
Consequently, the integrals must be evaluated using numerical techniques. We consider 
the special case of Gaussian clutter. Then, h2jN(q) = exp{-q), and fv(v) = 5{v - 1). 
Consequently, T* = /£M± WA)] - A = ln(T) = TG (say). For this special case, the 
data dependence of T* disappears. Using these observations in eq (1.12) and simplifying, 
it follows that Pfa = exp(-TG). Using h2JN(.) = exp{-.), fv(v) = 5{v - 1) and T* - TG 

in eq (1.15), we see that the resulting probability of detection is given by 

PD = r 2rexp[-(r2 + V
2)]I0{2vr)dr. (1.16) 

Jy/T* 

This is the well known expression for the matched filter detection probability. 
We now generalize the analysis to allow for the complex signal amplitude to be a random 

variable. More precisely, we assume that a is a complex-Gaussian random variable with 
zero mean and variance a2. We then derive the performance of the test of eq (1.8) for 

this case. 
Proceeding as before, it follows that the PDFs of W and A under the H0 condition 

remain unchanged. Furthermore, the invariance of the PDF of A under Hx is also pre- 
served. It is worthwhile noting that the complex Gaussian distribution on the signal 
amplitude is also preserved after the Householder transformation. The only difference 
under the Hx hypothesis is the conditional PDF of W. More precisely, conditioned on V, 
W is the squared magnitude of a complex-Gaussian random variable with zero mean and 
variance ß = aWH^s + v2. Hence, the conditional probability of detection is given by 
PD\A v = /r? \exP{~^)dr = ea;P(-5-)- The unconditional probability of detection is then 
obtained by using this expression in eq (1.15). Again, as in the previous case, closed-form 
evaluation of performance is not possible. The resulting integral must be calculated by 
using numerical methods. The Gaussian clutter case arises when h2JN(x) = exp{-x).ln 
this case, fv{v) = 5{v - 1). Using these facts in eq (1.15), it follows that PD = exp{—j) 
where ß = CTV*E^s+l and T* = ln(T). As before, the data dependence of the threshold 

disappears. 
Performance analysis is presented for the case of the K-distribution. The K-distributed 

envelope PDF, which is commonly used for modelling the amplitude statistics of land and 
sea clutter [19,20], is a specific case of SIRPs. The in-phase and quadrature components 
of a K-distributed SIRV follow the generalized Laplace distribution.  For this case, the 
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characteristic PDF and h2JN(.) are given by 

Mv) = ^(bv^expi-bWMv) 

h2JN(q) = f£L(bVv)a-JNK«-JN(2b^q) 
(1.17) 

where b is the scale parameter, a is the shape parameter, and u(.) is the unit step function. 
We use fv(v) and h2JN{.) for the K-distribution in eq (1.12) to determine the threshold 
for a false alarm probability of 10~4. Detection probability is calculated using eq (1.15) 
by numerical integration. Probability of detection is plotted as a function of the signal- 
to-noise-ratio, |a|2sHE_1s, for the case of a = 0.5 and a = 0.1 in Figures 1.1 and 1.2 
respectively. Relevant test parameters are reported in the figures. In [21], the performance 
evaluation of the optimal receiver was carried out via Monte-Carlo simulations. The 
results of our analysis for the two test cases considered are in agreement with the results 
of [21]. 

1.4    Conclusions 
We considered the performance of the optimal processor for target detection in additive 
non-Gaussian clutter which can be modeled as an SIRP. We derived integral expressions 
for the probability of false alarm and probability of detection for the case of a known 
signal with unknown complex amplitude. The results were then extended to the case of a 
signal with unknown complex amplitude following a complex-Gaussian distribution. The 
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Householder transformation provided a useful technique for simplifying the analysis. As 
a result, several important properties of the Householder transformation have been doc- 
umented in this work. Our results reduce to the well known expressions for the Gaussian 
matched filter as a special case. Except for the special case of Gaussian clutter, closed 
form or near closed form evaluation of the integrals is not possible. Further work needs 
to be undertaken to improve the numerical integration method used in this work. 



Chapter 2 

Analytical Expressions for the NMF 
and NAMF Tests 

2.1    Test Statistic Descriptions 
We now consider several non-adaptive and adaptive detection test statistics in this section. 

2.1.1    Non-Adaptive Test Statistics 
The optimal receiver for detecting a rank one signal in Gaussian interference with known 
covariance matrix, Rd is given by 

^MF =     _nJt-\r      <^MF- I2'1) 

In some instances, the test data vector is subject to an unknown scaling, r?2. Consequently, 
the test data covariance matrix takes the form r]2ILd. This corresponds to the scenario, 
where the covariance matrix has known structure but unknown level. The phase invariant 
matched filter (PI-MF) test for these problems is expressed as [22] 

|eHR^x|2 £ . (9 9x W
 
=
 WR7^I

W (  } 

where e and x are the concatenated JN x 1 signal 'search' steering and data vectors, 

respectively. The inner product of whitened vectors b = Rd
2x and f = Rd

2e is the 
matched filtering operation. Although (2.2) does not require knowledge of signal phase, it 
does require knowledge of the scale rj to be CFAR. The normalized matched filter (NMF) 
test [14,22-28] is given by 

|effR_1x|2 H 

W = [etfR^eHxtfR^x] £ AiVMF   =    r     rr„_1      j    U 1       1      <^NMF- (2-3) 



The whitening operation R? transforms the signal and data vectors to obtain f and b 

Schwartz inequality, 0 < AWMF < 1- 

2 1.2    Adaptive Test Statistics 
For the adaptive problem, R, replaces R, and the tests of (2.1) and (2.3) are referred to 
here as the AMF and NAMF, respectively. These tests are given by 

|eHRj'x|2 5 i (2.4) 

AMMF
     [eWRj'eHxHRj'x] ». 

Observe that A,MF is simply the adaptive versing^^^^tl^. 

the Kelly GLRT [6] is expressed as 

kaLEI -       .   . „      xHR;'x. ». 
[e»RJae][l + —^—1 

where 0 < W < 1- K * active *> Mte that in the >T* l'^ *' "t'ttt of 
72 1 and (2 6) conW to the test of (2.1), whereas the test of (2.5) converges to that of 
" ™is instrnctJto note that in the limit of large K the tests of (2.4) converges to 

No opümality claims of the NAMF test can be made for the case of SIRP disturbance. 

2.2    Analytic Results 

considered for tractability of analysis. 



The test statistic of (2.3) can be expressed in terms of the whitened steering vector, f, 
and the whitened test data vector, b as 

      [f*b|2     g ,    , 
A2 ~   [f"f][b"b]   H<A2 [2J) 

Noting that a unit vector in the direction of f is given by fx = (f4)0.5» b^b can be 

expressed as the sum of the squared magnitudes of projections along the subspace of f 
and the orthogonal complement space of f denoted by Pj.. Let w;, i = 1,2,... JN - 1 
denote an orthonormal basis set, for Pj. and X0 = ff b, Xt = wf b, i = 1,2,... JN - 1. 
Then, Xh i = 0,1,... JN - 1 are mutually uncorrelated univariate complex-SIRVs. Let 

JN-l 

fi = |X0|
2, 6 = XI l^i2' and * = 6 • The test statistic of (2-7) admits a representation 

of the form 
A. =      $ (2.8) 

2     (1 + *) K    J 

Under #0, -Xii » = 0,1,..., JN - 1 are zero mean unit variance complex-SIRVs with 
characteristic PDF fv(v). Hence, X{ = Z^V, where Zh i = 0,1,..., JN - 1 , are iid 

CN(0,1) random variables. Let Xi = |Z0|
2, XJN-I = Jl™'1 \Zi\2 , and A = —-±-. 

Thus, under H0, $ = A. The test statistic of (2.7) reduces to 

A   =      A (2.9) 
2     (1 + A) K    J 

A is the ratio of two statistically independent Chi-Squared distributed random variables. 
Hence it follows the central-F distribution [30] given by 

u{6) = ß(jN-i,i)(i+ sy» (210) 

where 
ß(m,n) = f <dm-\l - ti)"-1^. (2.11) 

Jo 
From (2.9) using a straightforward transformation of random variables, it follows that the 
PDF of A2(x) under H0 is given by 

/A2(r) = (JiV-l)(l-r)^-2. (2.12) 

Consequently, the probability of false alarm is given by 

Pfa-NMF = P(M > A2|#o) = (1 " Aj)™-1. (2.13) 

Under Hi, conditioned on V, & is a non-central Chi-Square distributed random variable 
with noncentrality parameter A = laKe^R^e) a while & conditioned on V is a central chi- 
square distributed random variable with JN-l degrees of freedom. Hence, conditioned 

10 



on V, $ has a non-central F distribution. After some algebra, the PDF of A2 given V is 

expressed as 

.A    AMl-rr  ^     0<r<l (2.14) hMr\v) = Ee^(-^-)v2^!/?(JAr_i)Ä + i) 

The conditional probability of detection is given by 

oo y}2     ^2fc 

ft-WFIv = P[(A2|V) > AalÄx] = D«=p(-^)^f[1 " teta:nc(A2l A + 1, JN - 1)] 
fc=0 (2.15) 

where 
betainc(x, m, n) = ^-r f C^U - C)""1^- (2"16) v ß(m,n)Jo 

The unconditional probability of detection obtained by taking the expectation of (2.15) 

over V is given by 
oo A2k . 

Pä-NMF = £M^2)4r[i" &etai"c(A2> ^ +1, Jiv -1)] (2-17) 
jfcl 

where 
MVO = fQ°°v-ikexp(-^)Mv)dv. (2.18) 

Finite sum expressions for detection probabilities are reported in [31]. Using the results 
therein, the expression of (2.17) simplifies to 

P       -in   XoV^T ^ (-^-)k
9k[A\i-h)]  (2.19) Pd-NMF -1 - (i - A2)      i, r(k + i)v(JN-k) vi-A2y 
yfcl   v 

where k_x       , 

»<»> = SftTTi)*-^- (2'20) 

For the case of the K-distributed SIRP, 

9     fc-1 al+av.0.5a+0.5l /„«„x 

*<"> = rRg^WTTT ^'^ (2'21) 

For convenience, we set ß = V5 in the examples presented. This normalization ensures 
unit mean square value for the modulating random variable V. The result of (2.19 is 
used in the examples presented in the next section. For the special case where h2i{w) - 
^(.^(corresponding to Gaussian clutter), the expression of (2.19) reduces to 

P 1   M   X y"*-^1 r(JiV) l-^-)k [l-gammainc(A2(l-X2)M 
Pd-NMF = I-(I-A2)      f-r(fc + i)r(jiv-fc) VI-A2; 

L 

fc=1 (2.22) 
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where 1 

gammainc(p, m) = ^T-T]Q 9m~'exp(-6)d6 (2.23) 

is the incomplete Gamma function. 
We now consider the problem of performance evaluation of the NAMF in Gaussian 

clutter. The NAMF test statistic, ANAMF is related to the Kelly GLRT test statistic, 

Anr BT of (2 6) where T = —; is the well known loss-factor with PDF [5] 

frM =  7L(1 - 7)JAr-2 (2.24) M7j     ß(L + l,JN-iy   {      1) 

where L = K-JN + 1. Noting that ANAMF = K^vy [t follows from ^ that the 

probability of false alarm conditioned on T is given by 

Pfa-NAMF\T = [1 + {1_ i)r]]L (2-25) 

where rj is the threshold.   The unconditional probability of false alarm is obtained by 
taking the expectation of (2.25) over T and is given by 

*/—' = L\+"-\w*>- (2'26) 

Similarly from [6] the NAMF probability of detection conditioned on V is given by 

(2.27) 
Taking the expectation of (2.27) over T yields the unconditional probability of detection, 
which is expressed as 

(2.28) 

For convenience, P<I-NAMF is expressed in terms of Pd CFAK of a scalar CFAR processor 
given by 

ftcM.01,A£) = i-jd^it (£)""ii-»~™(IT?
m)]-   (2-29) 

Numerical calculation of P<I-NAMF is obtained as 

M-l 

Pd-^MF = A7 £ ft OIPAKKI - IA7)»J, (1 - /A7)A, L]/r(/A7) (2-30) 
M-l 

£ 
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where A7 = ±. Analytic expressions for the Pfa and Pd of the NAMF operating in 
Gaussian clutter were independently derived in [2,32]. The corresponding expressions for 
the NMF in compound-Gaussian clutter appear here for the first time. 

In general, it is extremely difficult to derive the corresponding Pfa and Pd for the 
NAMF operating in SIRP clutter. This is due to the fact that the ML estimate of the 
SIRP covariance matrix is not available in closed form [33]. Hence, its PDF cannot 
be determined analytically. For the special case where the ML estimate of the SIRP 
clutter covariance matrix is to within a multiplicative constant of the sample covariance 
matrix [34], it is possible to derive the Pfa and Pd expressions for the NAMF in SIRP 
clutter. Specifically, for this scenario, the expression for Pfa remains unchanged from 
(2.26). However, the result for Pd is quite different from that of (2.28). The scenario 
where the ML estimate is to within a multiplicative constant of the sample covariance 
matrix corresponds to the case where the texture component of the SIRP is perfectly 
correlated. More precisely, for this scenario the texture component remains constant over 
all the training data realizations. However, real data seldom exhibits such a behavior [35]. 
Consequently, Pfa and Pd results for this scenario are merely of academic interest having 
little or no practical importance. 

The Pfa and Pd expressions for the N-PAMF and PAMF operating in both Gaussian 
and non-Gaussian clutter scenarios are lacking since the analysis becomes mathematically 
intractable. Additionally, it is difficult to guarantee the CFAR behavior of the N-PAMF 
and PAMF with respect to the unknown covariance matrix. Consequently, performance 
evaluation of these methods is carried out by Monte-Carlo techniques. Peformance results 

are presented in the next section. 

2.3    Performance Results 
Performance is now presented for the detectors described above. Figure 2.1 depicts the 
performance of the NMF in terms of Pd versus SINR in K-distributed SIRP for several 
shape parameter values. Relevant test parameters are provided in the plot. The Pd curves 
shown in this figure are obtained by using (2.19) and (2.22). It is instructive to observe the 
potential for improved NMF performance in impulsive clutter (a = 0.1). Furthermore, 
the NMF performance represents the upper bound on the performance of the N-PAMF 

and NAMF. 
Figure 2.2 plots the NMF threshold as a function of the clutter shape parameter. 

Observe that the threshold is independent of the clutter shape parameter. Hence, the 
NMF is texture CFAR. This property is of considerable importance in practice, where 
estimation of the clutter shape parameter imposes onerous requirements of training data 
support. However, this property of the NMF is lost when the covariance matrix underlying 
the clutter is unknown. Specifically, it is shown in [36] that while operating SIRP clutter 
the NAMF employing a sample covariance matrix estimate incurs a considerable increase 
in the false alarm probability for small values of the shape parameter. 

Figure 2.3 shows the performance of the NAMF operating in Gaussian clutter. Also 
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Figure 2.3: NAMF Performance in Gaussian Clutter 

shown is the performance of the NMF in Gaussian clutter. We observe that with K=2JN, 
for a given probability of detection, the SNR required by the NAMF is approximately 3 
dB larger than the corresponding SNR for the NMF. 

Figure 2.4 presents a performance comparison of the NAMF, AMF and Kelly GLRT 
in Gaussian clutter. For the example presented, the Kelly GLRT performs slightly better 
than the NAMF and CFAR-AMF. The latter two methods have comparable performance. 

2.4    Summary 
In this chapter, we presented analytic expressions for the probability of detection and 
probability of false alarm for the NMF operating in compound-Gaussian clutter. The 
texture CFAR feature of the NMF was noted. Probability of detection and false alarm 
for the NAMF operating in Gaussian clutter is also presented. Performance of the NAMF 
is compared with that of the NMF operating in Gaussian clutter. Approximately 3dB 
difference in performance was noted for K=2JN. 
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Chapter 3 

Statistical Analysis of the 
Nonhomogeneity Detector 

3.1 Introduction 
An important issue in space-time adaptive processing (STAP) for radar target detection is 
the formation and inversion of the covariance matrix underlying the clutter/interference. 
In practice, the unknown interference covariance matrix is estimated from a set of in- 
dependent identically distributed (iid) target-free training data which is assumed to be 
representative of the interference statistics in a cell under test. Frequently, the training 
data is subject to contamination by discrete scatterers or interfering targets. In either 
event, the training data becomes nonhomogeneous. As a result, it is non representative of 
the interference in the test cell. Estimates of the covariance matrix from nonhomogeneous 
training data result in severely undernulled clutter. Consequently, CFAR and detection 
performance suffer. Significant performance improvement can be achieved by employing 
pre-processing to select representative training data. 

The problem of target detection using improved training strategies has been considered 
in [37-44]. The impact of nonhomogeneity on STAP performance is considered in [44-47]. 
The works of [37-40,44,48] have addressed the use of the non-homogeneity detector (NHD) 
based on the generalized inner product (GIP) measure for STAP problems. The GIP is 
used as a measure to select representative training data by the NHD. In this chapter, we 
provide a statistical analysis of the GIP based NHD for Gaussian interference statistics. 

3.2 GIP Statistics: Known Covariance 

Let x = [ii s2 • • • xM]T denote a complex random vector with zero mean and known 
positive definite Hermitian covariance matrix R. The quadratic form given by Q = 
xHR~1x has the important property that E(Q) = M [30]. This result is readily proven 
below. 

Q = x^R^x = trfx^R^x] = trfR^xx"] (3.1) 
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where tr(.) denotes the trace of a matrix. We have made use of the fact that tr(AB) - 

tr(BA)   Hence 
E(Q) = E{tr[R-1xxH)} = tr{Il-lE{xxH}} (3 2) 

= triR^R) = tr(IM) = M 

where IM is the M x M identity matrix. This result is important in that it is independent 
of the PDF underlying x and is only a function of the dimension of the random vector. 

If the PDF of x is known, the corresponding PDF of Q can be readily derived. For 
Gaussian distributed x, i.e., x ~ CW(0,R), the PDF of Q is a Chi-Squared distribution 
with M complex degrees of freedom. More precisely, 

Q = xffR-1x=||R-"x||2 (3-3) 

where ||.|| denotes the Euclidean vector norm. Letting y = R"x gives 

M 

Q = \\y\\2 = E\n2 (3-4) 

where Yh i = 1,2,.. .M are iid CN(0,1) random variables. Since Q is the sum of the 
squared magnitudes of M iid CN{0,1) random variables, it follows that Q is a Chi- 
Squared distributed random variable with M complex degrees of freedom [30]. The PDF 

of Q is given by 

Mq) = T(M)eXP{'q)    °-q<°° (3'5) 

where T(.) is the Eulero-Gamma function. 
The GIP based NHD calculates the quadratic form Q using an estimated covanance 

matrix (formed from iid target free training data) and compares its mean with the di- 
mensionality of the random vector x. Deviations from M have been attributed to non- 
homogeneities in the training data [37-40,44]. In practice, the interference covanance 
matrix is formed from a finite amount of training data. The statistical variability associ- 
ated with the data could introduce additional errors and thus deviations of the GIP from 
M cannot entirely be ascribed to the presence of non-homogeneities. Consequently, it is 
useful to work with the statistics of Q formed with an estimated covariance matrix. 

3.3    GIP Statistics: Unknown Covariance 

The complex-Gaussian test data vector is denoted by x ~ CW(0,RT), where RT is 
unknown. Let zu i = 1,2,.. .K denote iid CiV(0,R.) target free training data. For 
representative (homogeneous) training data, RT = R, = R The maximum likelihood 
estimate of the covariance matrix is given by 

R=4i>zf- <3-6) 
-"■ i=l 
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p 
Let P = xHR_1x. A stochastic representation for the normalized GIP denoted by P = — 

is derived in appendix A. Consequently, P can be expressed as 

P = ^± (3.7) 

where Rx and R2 are statistically independent Chi-squared distributed random variables 
with PDFs given by 

rM-\ 
/Äl(ri) = r(MJexp{~ri)   °^1<0° (3>8) 

K-M 
fR>{r2) = r(K-M + i)expi~r2)  °^r2<°° (3>9) 

respectively. The PDF of P', which is simply a central-F distribution [49], is expressed as 

I rM-l 

fp'(r) = ß(L,M){l + r)M+L (3-10) 
0 < r < oo 

where L = K - M + 1 and 

ß(m,n) = !lem-\l - 0)n-ld9. (3.11) 
Jo 

The statistical equivalence of P to within a scalar of the ratio of two independent chi- 
square distributed random variables is fascinating in that it permits rapid calculation 
of the moments of P. More importantly, it is extremely useful in Monte-Carlo studies 
involving computer generation of P. For homogeneous training data, the use of (3.7) 
circumvents the need to explicitly generate the test data vector x and the training data 
vectors used for covariance estimation. For large M and perforce K, significant compu- 
tational savings can be realized from the method of (3.7). 

It can be readily shown that 

E(P) = KE{RX)E{R^) = —^ 

O*P 

M [1
'

K] (3-12) 

1-^ 
K 1 K     ■ 

where E(P) and a% denote the mean and variance of F, respectively. We then consider 
7? R2 

the PDF of — in the limit of large K. The characteristic function of — is given by 
K "■ 

<f>Ä2(ju,) = E[exp(-jA] = ^  (3-13) 
K     K' 
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In the limit of K -)■ oo, we have 

*(jw) = UmK^oo$R2(M = exp(-ju). (3.14) 

The PDF of -£ in the limit of Ä" -» oo is given by 
K 

fR(r) = ±- r exp[(r - l)ju>]du = 5(r - 1). (3.15) 
Z7T J-oo 

Hence, for ÜT -» oo, ß2/Ä" becomes unity with probability 1. Consequently, the GIP 
is simply Rx and hence, follows a Chi-Squared distribution with M complex degrees of 
freedom. Thus for K -> oo, E(P) = M and a2

P = M, corresponding to the known 
covariance matrix results. Consequently, the GIP statistical representation given by (3.7) 
provides additional insights into the NHD. The numerator random variable corresponds 
to the GIP statistics for known covariance matrix. The denominator random variable 
succinctly embeds the deleterious effects of estimating the covariance matrix with finite 
sample support as well as nonhomogeneity of the training data. A manifestation of 
this effect can be seen from the deviation of the statistics of R2 from the Chi-Squared 
distribution. 

3.4    New Test for Nonhomogeneity 

The work of [37-40,44] uses an NHD based on comparing the mean of empirically formed 
GIPs (from different realizations of test data) to M. Large deviations from M are as- 
cribed to nonhomogeneities. However, the effects of finite data support and the associated 
statistical variability can result in large deviations of the empirical GIP mean from M. 
Thus, a more stringent test for the GIP based NHD consists of the following steps: 

1. Form the GIP denoted by P for a given K. 

2. Perform a goodness-of-fit test of the empirically formed £ with the theoretically 
predicted PDF of (3.10). Specifically, we set the type-I error, a, to be 0.1. This is 
simply the probability of incorrectly rejecting the hypothesis that the data comes 
from the F-distribution of (3.10). More precisely, this corresponds to calculating a 
threshold A, such that a = Pr(P' > A) = 0.1. From (3.10), it follows that 

Pr(P' > A) = betainci-^——,   M,  L) (3.16) 

where 1 

betainc(x, M, L) = ß^jf0 ^ (* " e)L~H9- (317) 

Given a, M, and L, A is readily calculated from an inversion of (3.16). The goodness- 
of-fit test consists of comparing the empirically formed P' from each training data 
realization with A and rejecting those realizations for which P' exceeds A. 
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3. Compare the empirical GIP mean to the theoretically predicted mean value of (3.12). 
Large discrepancies between the theoretical and empirical means result from non- 
homogeneities. This serves as an independent validation of step 2. 

4. Histogram plots of the empirical values of £ overlaid on the theoretical PDF of P 
serve as an additional check on the results of steps 2 and 3. 

3.5 Performance Analysis 

We present performance results of our approach here. Figure 3.1 shows the PDF of P 
for several values of K with M=8 for Gaussian interference statistics. Observe that the 
variance of P' decreases with increasing K. This is anticipated since R tends to R with 
probability 1 as K -> oo. The results presented in Figures 3.2 and 3.3 correspond to the 
case of homogeneous training data. Figure 3.2 presents a comparison of the cumulative 
distribution function (CDF) of P' obtained from Monte-Carlo realizations using simulated 
data with the theoretically predicted CDF of P' obtained by numerical integration of 
(3.10). Figure 3.3 plots the theoretical PDF of P' given by (3.10) over the histogram 
obtained from Monte-Carlo data for M=8 and K=16. The results show good agreement 
between the theoretical prediction and the empirically generated values. The mean value 
of P, 15.957, obtained via Monte-Carlo compares well with the theoretically predicted 
value of 16. Figure 3.4 plots the type-I error versus threshold for M=64. Here different 
values of K are chosen to illustrate the threshold behavior. For each value of a, A is 
determined from a numerical inversion of (3.16). For a given a we observe an increase 
in A with increasing K. Figure 3.5 shows the results of the goodness of fit test for the 
MCARM data [50] using acquisition '220' on Flight 5, cycle 'e' for 8 channels and 16 
pulses. The normalized GIP and the threshold are plotted as a function of range. Non- 
homogeneity of the training data is evident in those bins for which the normalized GIP 
exceeds the threshold. 

3.6 Conclusion 
This work extends the results of previous work on non-homogeneity detection by providing 
a rigorous statistical characterization of the NHD for Gaussian interference. It is shown 
that the NHD statistic admits a simple representation as a ratio of two statistically in- 
dependent Chi-squared distributed random variables. A formal goodness-of-fit test based 
on this representation, which follows an F-distribution, is derived. Performance analysis 
of the method is considered in some detail. The illustrative examples validate the ap- 
proach taken and confirm the results. Future work would include extensive performance 
analysis using simulated and measured data showing the resulting impact on STAP per- 
formance. The performance of several STAP algorithms in Gaussian and non-Gaussian 
interference scenarios has been considered in [36]. Future work will address performance 
of the methods treated in [36] with suitable NHD pre-processing. 
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Appendix A:Stochastic 
Representation for the Normalized 
GIP 

Let Z denote a data matrix whose columns are the previously defined z;, i = 1,2,..., K. 

The maximum likelihood estimate of the covariance matrix is then expressed as R = — S«, 

where Sz = 7/LH. Consequently, the normalized GIP is expressed as 

P = xHS7lx. (3.18) z 

The data matrix Z and the vector x admit a statistical representation of the form 

Z = R*Y (3.19) 
x = Rzy 

where Y is a data matrix whose columns, y*, i = 1,2,...,K are iid CN(0,I) random 
vectors and y is a CN(0,I) random vector, which is statistically independent of Y. Hence, 
the normalized GIP is expressed as 

P = y^S-V (3.20) 

uuff 

where S„ = YYH. Next, we use a Householder transformation defined by A = 1-2—^-, 

where u = y - ||y||e and e = [100... Of, so that y = Ay = ||y||e. Also, let Y = AY. 
Since A = AH and AAH = AHA = I, it follows that the statistics of Y are identical to 
that of Y. Conseqently, the normalized GIP is expressed as 

P = yHS^y (3.21) 

where Sö = YYH. Furthermore, we partition Y as 

Y = f E | (3-22) 
1 ii . 
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where yf is the the first row of Y and Y$ denotes the (M - 1) x K matrix formed from 
the remaining rows of Y. Consequently, Sg is expressed as 

Sy   — 
yfyi  yfYn 
Ygyi   YgYn 

(3.23) 

The inverse of Sy admits a representation of the form 

q-i _ 
Sn   Si2 

S21   S22 

Finally, the normalized GIP is expressed as 

P' = HylpS11. 

(3.24) 

(3.25) 

However, from the matrix inversion Lemma it follows that S11 = [yfP±yi]-1, where 
P± = [I - YiiCYgYn)-1^]. Since Yi^YgYn)-1^ is a projection matrix of rank 
M-l, it follows that Pj. is a projection matrix of rank K-M+l. Consequently, yfP±yi = 
K-M+l 

Yl   \yi(i) I2- Therefore, S11 is simply the reciprocal of a chi-squared distributed random 

variable with K-M + l complex degrees of freedom. Also, ||y||2 is simply the sum of 
the squared magnitudes of M iid CN(0,1) random variables and hence follows a chi- 
squared distribution with M complex degrees of freedom. Consequently, the GIP admits 
a representation of the form of (3.7). 
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